Exercise 46

Find the values of a and b that make f continuous everywhere.

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x<2 \\ a x^{2}-b x+3 & \text { if } 2 \leq x<3 \\ 2 x-a+b & \text { if } x \geq 3\end{cases}
$$

Solution

$\frac{x^{2}-4}{x-2}$ is a rational function that is continuous on $x<2, a x^{2}-b x+3$ is a polynomial that is continuous on $2 \leq x<3$, and $2 x-a+b$ is a polynomial that is continuous on $x \geq 3$. Determine a and b by requiring the function to be continuous at $x=2$ and $x=3$.

$$
\begin{array}{rr}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) & \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x) \\
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2^{+}}\left(a x^{2}-b x+3\right) & \lim _{x \rightarrow 3^{-}}\left(a x^{2}-b x+3\right)=\lim _{x \rightarrow 3^{+}}(2 x-a+b) \\
\lim _{x \rightarrow 2^{-}} \frac{(x+2)(x-2)}{x-2}=a(2)^{2}-b(2)+3 & a(3)^{2}-b(3)+3=2(3)-a+b \\
\lim _{x \rightarrow 2^{-}}(x+2)=4 a-2 b+3 & 9 a-3 b+3=6-a+b \\
4=4 a-2 b+3 & 10 a-4 b+3=6 \\
1=4 a-2 b & 10 a-4 b=3
\end{array}
$$

This is a system of two equations for two unknowns, a and b.

$$
\left.\begin{array}{r}
10 a-4 b=3 \\
4 a-2 b=1
\end{array}\right\}
$$

Subtract the respective sides to eliminate b.

$$
2 a=1
$$

Therefore,

$$
a=\frac{1}{2} .
$$

Plug this result back into either of the two equations.

$$
\begin{gathered}
10 a-4 b=3 \\
10\left(\frac{1}{2}\right)-4 b=3 \\
5-4 b=3 \\
4 b=2
\end{gathered}
$$

Therefore,

$$
b=\frac{1}{2} .
$$

Below is a graph of $f(x)$ versus x with $a=\frac{1}{2}$ and $b=\frac{1}{2}$.

